Magnetic Field in Integrated Simulation of Fast Ignition

H. Nagatomo1, T. Johzaki2, A. Sunahara2, H. Sakagami3, K. Mima4, Y. Sentoku5

1Institute of Laser Engineering, Osaka University, Suita, Japan
2Institute for Laser Technology, Suita, Japan
3National Institute for Fusion Science, Toki, Japan
4The Graduate School of the Creation of New Photonics Industries
5University of Nevada, Reno

JIFT Workshop “The Next Stage in the Progress of Simulation Science in Plasma Physics”
December 3, 2011, NIFS
FIREX-I and GXII Compression Heating

Ultra-intense Short-pulse laser

Plasma Temperature (keV)

GEKKO IV
'88-89
High Density
GEKKO XII
'88-89
Cone target 2002
FI REX-I
Ignition condition
GEKKO II
'85-86
GEKKO MII
High gain

10^22
10^21
10^20
10^19
10^18
10^17
10^16
1.0
10
10^2
0.1
Plasma parameter (sec/m^2)

10^22
10^21
10^20
10^19
10^18
10^17
10^16
0.1
Plasma Temperature (keV)

FIREX-I
Implosion (GXII) ; 10 kJ (1 ns) in 0.53 um laser
Heating (LFEX) ; 10 kJ (10 ps) in 1.06 um laser
Contents

• Fast Ignition
 • Difference between experiments and simulations

• Magnetic field effect in implosion
 • Self-generated magnetic field in non-spherical implosion.

• Controlling e-beams using self-generating resistive magnetic fields.

• Controlling e-beams using external magnetic fields.
FIREX-I Integrated experiments

Compression Laser: GEKKO-XII

Fusion Fuel Target

Heating Laser: LFEX

<table>
<thead>
<tr>
<th>Beam#</th>
<th>9/12 beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>280 J/beam (2.5 kJ total)</td>
</tr>
<tr>
<td>Duration</td>
<td>1.5 ns (Flat top)</td>
</tr>
<tr>
<td>Wavelength</td>
<td>527 nm</td>
</tr>
</tbody>
</table>

Shell
- Diameter: 500 μm
- Thickness: 7 μm
- Material: CD plastic
- Cone
 - Angle: 45 deg.
 - Material: Gold

Beam#
- 2 beam

Energy
- 400 ~ 2000 J

Duration
- 1.5 - 2 ps

Wavelength
- 1053 nm

Experiment
- Φ1: Aug. 16 – Dec. 24, 2010 (GXII + LFEX)
- Φ2: Jan. 5 – Jan. 25, 2011 (LFEX only)
2010 FIREX exp’t reproduced Yn @ 2002 exp’t

To achieve core temperature of 5keV with 10kJ heating, the energy coupling of heating laser to dense core $\eta_{L\rightarrow core}>10\%$ is required.
Integrated simulations showed smaller coupling (6.3 %) due to large beam divergence & collision in the Au tip.

LPI with PIC

\[f(E) \propto E^\alpha \]
\[\alpha = 1.228 \]
\[T_h = 3.2 \text{MeV} \]

Implosion with Rad-hydro

\[\rho \text{[g/cm}^3\text{]} \]

To enhance the heating efficiency, the beam guiding with small collisional loss in tip is indispensable.

Heating with FP

\[\eta_{L \rightarrow \text{core}} = 6.3\% \]
Energy coupling in FIREX exp. was estimated by PIC+FP simulations.

Laser to forward electrons | Tip transmittance | Solid angle of the core | Deposition

w/o pre-plasma

50%

60%

60%

60%

Coupling = 0.5 × 0.6 × 0.6 × 0.4 = 7%

w/ pre-plasma

40%

60%

60%

Coupling = 0.4 × 0.6 × 0.6 × 0.1 = 1.4%

Pre-plasma significantly reduces energy coupling from laser to core.

A. Sunahara et al., IFSA’11 O.Tu_A.9
Is any numerical model missing in our integrated simulations?

In the non-spherical implosion magnetic field is generated and compressed by implosion.

\[
\frac{\partial B}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \frac{c}{e} \left[\nabla \times \left(\frac{\nabla p_e}{n_e} \right) - \nabla \times \left(\frac{\nabla \times \mathbf{B} \times \mathbf{B}}{4\pi n_e} \right) - \nabla \times \left(\mathbf{R}_{\tau} + \mathbf{R}_{\eta} \right) \right]
\]

Magnetic field generation and transport in implosion are solved in post-process to estimate. \((T_e, n_e)\) in radiation hydro simulation \(\rightarrow\) magnetic transport equation.)
Implosion simulation (Rad-Hydro)

(2D ALE-CIP Radiation-Hydro code)

PINOCO
- 2 temperature plasma
 - Hydro ALE-CIP method
- Thermal transport
 - flux limited type Spitzer-Harm
 - Implicit (9 point-ILUBCG)
- Radiation transport
 - multi-group diffusion approximation
 - Implicit (9 point-ILUBCG)
 - Opacity, Emissivity (LTE, CRE)
- Laser energy
 - 1-D ray-trace
- EOS
 - QEOS (Tomas-Fermi +Cowan)
 - SESAMI

Implosion Laser condition
- Gaussian pulse shaping
- Wavelength: 0.53 μm
- Energy (on target): 2.5 kJ

Shell Target
- CH 8 μm

Gold cone
- 30° (Full angle)
- 250 μm

axial symmetry

computational grids: 280 (i- dir.) x 280 (j – dir.)
The order of 10 MG magnetic field is generated, which can collimate the e-beams.

\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left\{ (\mathbf{V}_i + \mathbf{V}_e) \times \mathbf{B} \right\} + \frac{e}{c} \nabla T_e \times \nabla (\log n_e - \beta') - \nabla \times \left\{ \frac{1 + \alpha''}{4 \pi m_e} (\nabla \times \mathbf{B}) \times \mathbf{B} \right\} \]

\[-\nabla \times \left(\frac{m_e c}{4 \pi e} \frac{\alpha_0}{n_e \tau_e} \mathbf{h} \cdot (\nabla \times \mathbf{B}) \cdot \mathbf{h} \right) - \nabla \times \left(\frac{m_e c}{4 \pi e} \frac{1 - \alpha'}{n_e \tau_e} \mathbf{h} \times [\nabla \times \mathbf{B}] \mathbf{h} \right) \]

Electron heat conductivity is effected by magnetic field

\[\kappa_e = \frac{\kappa_e}{1 + (\omega_{ce} / V_{ei})} \]

\[\omega_{ce} = \frac{BT^{3/2}}{n_e} \]

This Braginskii coefficients must be solved with implosion dynamics simultaneously.

Next work
Integrated Simulations

$\mathcal{F}I^3$ (Fast Ignition Integrated Interconnecting) Code System

Radiation-Hydro “PINOCO” (implosion)

Nagatomo, ILE

Radiation-Hydro “Star” with 3D ray-trace & detailed atomic data (pre-foamed plasma)

Sunahara, ILT

Pre-formed plasma profile

Imploded core & deformed cone profiles

BFIELD

FP-Hydro “FIBMET” (core heating & fusion burning)

Johzaki, ILE

Fast electron & ion profiles

PIC “FISCOF” (relativistic laser-plasma interaction)

Sakagami, NIFS, Johzaki, ILE
Electron confinement by double-cone target

Double cone target sustain sheath field at the outer surface to prevent them spreading away. Electron energy flux propagate through the tip is 93% of isolated cone case.

Difficulty in fabrication
Tongari-Tip Guiding Concept

Extended & Tapered cone tip

Guiding of fast electron is expected.

Collisional effects in the tip becomes larger due to thicker tip.

Material selection is important.

\[
\frac{\partial \vec{B}}{\partial t} = \nabla \times (\eta \vec{j}_f) = \nabla \eta \times \vec{j}_f + \eta (\nabla \times \vec{j}_f)
\]

* A. Sunahara et al., Particles and Beams to be published
Cone-guided implosion with Tongari tip

Laser condition
- Wavelength: 0.53 µm
- Energy: 3.0 kJ (for 4π)
- Gaussian (0.9 + 0.2 ns)

Tip material:
- CH ($\rho=1.0$ g/cc, $Z=3.5$), Al ($\rho=2.69$ g/cc, $Z=13$),
- DLC (Diamond-like-Carbon: $\rho=3.5$ g/cc, $Z=6$),
- Cu ($\rho=8.92$ g/cc, $Z=29$), and Au ($\rho=19.3$ g/cc, $Z=79$)
Any tip material cases, characteristics of the imploded core is almost the same

ρL on the axis

Al (2.69)

CH (1.06 g/cc)

DLC (3.5)
The tip-breakup-time is determined by the mass density of the pointed-tip.

DLC tip may guide the e-beam?
Core heating simulation with FP+Hydro code

Fast Electron Profiles from PIC sim.

\[I_L = 3 \times 10^{19} \text{W/cm}^2 \text{ LPI with PIC} \]

Imploded core profiles from rad-hydro sim.

Density profile @2.7ns

\[f(E) \propto E^\alpha \]
\[\alpha = 1.228 \]
\[T_h = 3.2 \text{MeV} \]

\[f(E) \propto \exp(-E/T_h) \]

\[\theta = 55^\circ \]

FP+Hydro simulation
Heating Performance

After 1ps injection

<table>
<thead>
<tr>
<th>Tip</th>
<th>B_{max}</th>
<th>ΔE_{tip}</th>
<th>ΔE_{core}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au Tongari</td>
<td>1510T</td>
<td>105%</td>
<td>-10%</td>
</tr>
<tr>
<td>Cu Tongari</td>
<td>1193T</td>
<td>98%</td>
<td>5%</td>
</tr>
<tr>
<td>Al Tongari</td>
<td>1204T</td>
<td>32%</td>
<td>35%</td>
</tr>
<tr>
<td>DLC Tongari</td>
<td>767T</td>
<td>47%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Relative to the Au flat tip case.
Conclusion and Summary

B-fields may play an important role in Fast Ignition scheme.

Passive effect
- Non-spherical implosion generates B-field and it is compressed by implosion.

Active control
- “TONGARI” tip cone is proposed for fast electron guiding using self-generating resistive B-fields along the cone outer surface and evaluated it’s heating performance with Integrated simulations.
 - Implosion performance is almost the same as the normal tip case.
 - Tip breakup timing becomes later, and depends on the material density.
 - The resistive guiding is effective if low-Z material is used.
 - The energy coupling of fast electron to core is enhanced by 30% for DLC TONGARI tip case.
 - But using high-Z material, the energy loss in the long tip becomes larger, which results in lower energy coupling to core.
 - DLS or Al Tongari tip cone is expected to enhance the core heating efficiency.
- Compression of External B-field.