Efficient Modeling of Laser-Plasma Accelerators Using the Ponderomotive-Based Code INF&RNO

C. Benedetti, C.B. Schroeder, C.G.R. Geddes, E. Esarey, & W.P. Leemans

BELLA Center, LBNL, Berkeley, CA, USA

2014 US-Japan JIFT Workshop on Progress in kinetic plasma simulations
October 31st – November 1st, 2014, New Orleans, LA

Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231
Overview of the presentation

- challenges in modeling laser-plasma accelerators (LPAs) over distances ranging from cm to m scales

- the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde)
 - basic equations, numerics, and features of the code
 - validation tests and performance

- applications
 - modeling of present LPA experiments @ BELLA (BErkeley Lab Laser Accelerator): ~4.3 GeV e-beam in a 9 cm capillary

- conclusions
Laser-plasma accelerators*: 1-100 GV/m accelerating gradients

Laser driver:
- ultra-short ($T_0 \sim$ tens of fs $\sim \lambda_p$)
- ultra-intense (Ti:Sa laser $I_0 > 10^{18}$ W/cm²)

\[a_0 = eA_0^{\text{laser}}/mc^2 \]
\[\approx 8.5 \cdot 10^{-10} I_0^{1/2}[W/cm^2] \lambda_0[\mu m] \sim 1 \]

Wakefield excitation due to charge separation: ions at rest VS electrons displaced by ponderomotive force

\[E_z \sim mc\omega_p/e \sim 100 [V/m] \times (n_0[cm^{-3}])^{1/2} \]

e.g.: for $n_0 \sim 10^{17} \text{ cm}^{-3}$, $a_0 \sim 1 \rightarrow E_z \sim 30 \text{ GV/m},
\sim 10^2-10^3$ larger than conventional RF accelerators

*Esarey et al., RMP (2009)
Scalings for e-beam energy in LPAs

Limits to single stage energy gain:

- **laser diffraction** (∼ Rayleigh range)
 → mitigated by transverse plasma density tailoring (plasma channel) and/or self-focusing: (self-)guiding of the laser

- **beam-wave dephasing**
 \[\beta_{\text{bunch}} \sim 1, \beta_{\text{wave}} \sim 1-\frac{\lambda_0^2}{2\lambda_p^2} \rightarrow \text{slippage} \ L_d \propto \lambda_p / (\beta_{\text{bunch}} - \beta_{\text{wave}}) \sim n_0^{-3/2} \]
 → mitigated by longitudinal density tailoring

- **laser energy depletion** → energy loss into plasma wave excitation (\(L_{pd} \sim n_0^{-3/2} \))

Energy gain (single stage) \(\sim n_0^{-1} \)
Interaction length (single stage) \(\sim n_0^{-3/2} \)
Example of LPA experiment: 1 GeV high-quality beams from ~3 cm plasma

GeV e-bunch produced from cm-scale plasma (using 1.5 J, 46 fs laser, focused on a 3.3 cm discharge capillary with a density of 4x10^{18} cm^{-3])*

E=1012 MeV
dE/E = 2.9%
1.7 mrad

3D full-scale modeling of an LPA over cm to m scales is a challenging task

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser wavelength (λ_0)</td>
<td>$\sim \mu$m</td>
</tr>
<tr>
<td>Laser length (L)</td>
<td>\sim few tens of μm</td>
</tr>
</tbody>
</table>
| Plasma wavelength (λ_p) | $\sim 10 \mu$m @ 10^{19} cm$^{-3}$ \\
| | $\sim 30 \mu$m @ 10^{18} cm$^{-3}$ \\
| | $\sim 100 \mu$m @ 10^{17} cm$^{-3}$ |
| Interaction length (D) | \sim mm @ 10^{19} cm$^{-3}$ → 100 MeV \\
| | \sim cm @ 10^{18} cm$^{-3}$ → 1 GeV \\
| | \sim m @ 10^{17} cm$^{-3}$ → 10 GeV |

Simulation complexity:

$\propto \left(\frac{D}{\lambda_0} \right) \times \left(\frac{\lambda_p}{\lambda_0} \right)$

$\propto \left(\frac{D}{\lambda_0} \right)^{4/3}$ [if D is deph. length]

3D explicit PIC simulation:

✓ 10^4–10^5 CPUh for 100 MeV stage
✓ $\sim 10^6$ CPUh for 1 GeV stage
✓ $\sim 10^7$–10^8 CPUh for 10 GeV stage

![Image from Shadwick et al.](image.png)
The INF&RNO framework: motivations

What we need (from the computational point of view):

- run 3D simulations (dimensionality matters!) of cm/m-scale laser-plasma interaction in a reasonable time (a few hours/days)
- perform, for a given problem, different simulations (exploration of the parameter space, optimization, convergence check, etc.)

Reduced Models#,%,^.&,@,+
[drawbacks/issues: neglecting some aspects of the physics depending on the particular approximation made]

Lorentz Boosted Frame*
[drawbacks/issues: control of numerical instabilities, self-injection to be investigated, under-resolved physics (e.g. RBS)]

* Vay, PRL (2007)

Mora & Antonsen, Phys. Plas. (1997) [WAKE]
% Huang, et al., JCP (2006) [QuickPIC]
^ Lifshitz, et al., JCP (2009) [CALDER-circ]
& Cowan, et al., JCP (2011) [VORPAL/envelope]
+ Mehrling, et al., PPCF (2014) [HiPACE]
INF&RNO ingredients:

- envelope model for the laser
 - no λ_0
 - axisymmetric

- 2D cylindrical (r-z)
 - self-focusing & diffraction for the laser as in 3D
 - significant reduction of the computational complexity
 ... but only axisymmetric physics

- ponderomotive approximation w/laser envelope to describe laser-plasma interaction
 - (analytical) averaging over fast oscillations in the laser field
 - scales @ λ_0 are removed from the plasma model \rightarrow # of time steps
 reduced by $\sim \lambda_p / \lambda_0$

- PIC & (cold) fluid
 - fluid \rightarrow noiseless and accurate for linear/mildly nonlinear regimes
 - integrated modalities (e.g., PIC for injection, fluid acceleration)
 - hybrid simulations (e.g., fluid background + externally injected bunch)

* Benedetti et al., Proc. of AAC10; Benedetti et al., Proc. of ICAP12

INF&RNO* is orders of magnitude faster than full PIC codes still retaining physical fidelity
The INF&RNO framework: physical model

The code adopts the “comoving” normalized variables $\xi = k_p (z - ct)$, $\tau = \omega_p t$

- **laser pulse (envelope)**
 \[
 a_\perp = \frac{\hat{a}(\xi, r)}{2} e^{i(k_0/k_p)\xi} + c.c. \rightarrow \left(\nabla_\perp^2 + 2i \frac{k_0}{k_p} \frac{\partial}{\partial \tau} + 2 \frac{\partial^2}{\partial \xi \partial \tau} - \frac{\partial^2}{\partial \tau^2} \right) \hat{a} = \frac{\delta}{\gamma_{\text{fluid}}} \hat{a}
 \]

- **wakefield (fully electromagnetic)**
 \[
 \frac{\partial E_r}{\partial \tau} = \frac{\partial (E_r - B_\phi)}{\partial \xi} - J_r \quad \frac{\partial E_z}{\partial \tau} = \frac{\partial E_z}{\partial \xi} + \frac{1}{r} \frac{\partial (rB_\phi)}{\partial r} - J_z \quad \frac{\partial B_\phi}{\partial \tau} = - \frac{\partial (E_r - B_\phi)}{\partial \xi} + \frac{\partial E_z}{\partial r}
 \]

- **plasma**
 \[
 \text{PIC} \rightarrow \begin{cases}
 \frac{d\xi_j}{d\tau} = \beta_{z,j} - 1 \\
 \frac{du_{z,j}}{d\tau} = -\frac{\partial \gamma_j}{\partial \xi} - E_z - \beta_r B_\phi \\
 \frac{dr_{j}}{d\tau} = \beta_{r,j} \\
 \frac{du_{r,j}}{d\tau} = -\frac{\partial \gamma_j}{\partial r} - E_r + \beta_z B_\phi \\
 \gamma_j = \sqrt{1 + |\hat{a}|^2/2 + u_{z,j}^2 + u_{r,j}^2}
 \end{cases} \quad \text{fluid} \rightarrow \begin{cases}
 \frac{\partial \delta}{\partial \tau} = \frac{\partial \delta}{\partial \xi} - \nabla \cdot (\vec{\beta} \delta) \\
 \frac{\partial (\delta u_j)}{\partial \tau} = \frac{\partial (\delta u_j)}{\partial \xi} - \nabla \cdot (\vec{\beta} \delta u_j) + \\
 + \delta \left(- (E + \vec{\beta} \times B) - \frac{1}{2\gamma_{\text{fluid}}} \nabla \frac{|\hat{a}|^2}{2} \right)_j \\
 \gamma_{\text{fluid}} = \sqrt{1 + |\hat{a}|^2/2 + u_z^2 + u_r^2}
 \end{cases}
 \]

where δ is the density and \mathbf{J} the current density
The INF&RNO framework: numerical aspects

- **longitudinal derivatives (no staggering in space):**
 - 2nd order **upwind** FD scheme $\to (\partial_{\xi} f)_{i,j} = (-3f_{i,j} + 4f_{i+1,j} - f_{i+2,j}) / 2\Delta\xi$
 - B.C. easy to implement (unidirectional information flux in ξ from R to L)

- **transverse (radial) derivatives (no staggering in space):**
 - 2nd order **centered** FD scheme $\to (\partial_r f)_{i,j} = (f_{i,j+1} - f_{i,j-1}) / 2\Delta r$
 - fields are not singular in $r=0$, from symmetry we have

 $$\partial_r E_z = 0, \quad E_r = B_\phi = 0, \quad \lim_{r \to 0} E_r / r = \partial E_r / \partial r |_0, \quad \lim_{r \to 0} B_\phi / r = \partial B_\phi / \partial r |_0$$

- RK2 [fluid]/RK4 [PIC] for time integration of particles/fields (no staggering)

- **quadratic shape** function for force interpolation/current deposition [PIC]

- **digital filtering** for current and/or fields smoothing [PIC]
 - N*binomial filter (1, 2, 1) + compensator
 - compact low-pass filter*: $\beta F_{i-1} + F_i + \beta F_{i+1} = \sum_{k=0,2} a_k(\beta) (f_{i+k} + f_{i-k}) / 2$

- **Langdon-Marder** method for charge conservation

* Shang, JCP (1999)
The INF&RNO framework: improved laser envelope solver/1

- envelope description: $a_{\text{laser}} = \hat{a} \exp[\text{i} k_0 (z-ct)]/2 + \text{c.c.}$

- early times: NO need to resolve $\lambda_0 (\sim 1 \mu m)$, only $L_{\text{env}} \sim \lambda_p (\sim 10-100 \mu m)$
- later times (laser-pulse redshifting): structures smaller than L_{env} arise in \hat{a} (mainly in $\text{Re}[\hat{a}]$ and $\text{Im}[\hat{a}]$) and need to be captured*

$$a_0 = 1.5, \ k_0/k_p = 20, \ L_{\text{env}} = 1$$

Is it possible to have a good description of a depleted laser at a “reasonably low” resolution?

* Benedetti at al., AAC2010
Cowan et al., JCP (2011)
Zhu et al., POP (2012)
The INF&RNO framework: improved laser envelope solver/2

- envelope evolution equation is discretized in time using a 2nd order Crank-Nicholson scheme

\[- \frac{\hat{a}^{n+1} - 2\hat{a}^n + \hat{a}^{n-1}}{\Delta t^2} + 2 \left(i \frac{k_0}{k_p} + \frac{\partial}{\partial \xi} \right) \frac{\hat{a}^{n+1} - \hat{a}^{n-1}}{2\Delta t} = -\nabla_\perp^2 \frac{\hat{a}^{n+1} + \hat{a}^{n-1}}{2} + \frac{\delta_n}{\gamma_{\text{fluid}}(\hat{a}^n)} \frac{\hat{a}^{n+1} + \hat{a}^{n-1}}{2} \]

- FD form for \(\partial/\partial \xi \) → unable to deal with unresolved structures in \(\hat{a} \)

- INF&RNO uses a polar representation* for \(\hat{a} \) when computing \(\partial/\partial \xi \)

\[
\hat{a} = \Re[\hat{a}] + i\Im[\hat{a}] = |\hat{a}|e^{i\theta}
\]

\[
\partial_\xi \hat{a} = \left\{ \begin{array}{ll}
\partial_\xi (\Re[\hat{a}]) + i\partial_\xi (\Im[\hat{a}]) & \text{(cartesian)} \\
\partial_\xi (|\hat{a}|)e^{i\theta} + i(\partial_\xi \theta)\hat{a} & \text{(polar)}
\end{array} \right.
\]

“smoother” behavior compared to \(\Re[\hat{a}] \) and \(\Im[\hat{a}] \)

The INF&RNO framework: improved laser envelope solver/3

1D sim.: $a_0=1$, $k_0/k_p=100$, $L_{\text{rms}} = 1$ (parameters of interest for a 10 GeV LPA stage)

\[t = 0.8 \cdot L_{pd} \]

Pump depletion length (resonant pulse): $L_{pd} \approx \frac{\lambda_p^3}{\lambda_0^2} \approx 80 \text{ cm}$
The INF&RNO framework: quasi-static solver*

• QS approximation:
 → neglect the $\partial / \partial t$ in wakefields/plasma quantities

for a given driver configuration solve ODE/PDE for plasma and wakefield →

\[
\frac{dr}{d\xi} = -\frac{ur}{1+\psi}
\]
\[
\frac{d\psi}{d\xi} = \frac{ur}{1+\psi} (Er - B_\phi) - E_z
\]
\[
\gamma - u_z - \psi = 1
\]
\[
\nabla^2_{\perp} E_z = \frac{1}{r} \frac{d}{dr} (rJ_r)
\]
\[
\frac{\partial (Er - B_\phi)}{d\xi} = J_r
\]
\[
\frac{1}{r} \frac{d}{dr} (rB_\phi) = J_z - \frac{\partial E_z}{\partial \xi}
\]

→ retain $\partial / \partial t$ for the driver (laser or particle beam)

driver is frozen while plasma is passed through the driver and wakefields are computed

wakefield is frozen while driver is advanced in time

Δt set according to driver evolution (much bigger than conv. PIC)

Mehrling, Benedetti, et al., PPCF (2014)
Quasi-static solver allows for significant speed-ups in simulations of underdense plasmas

- Reduction in # of time steps compared to full PIC simulations (laser driver) \(\rightarrow \sim (\lambda_p/\lambda_0)^2 \)

- Reduction in # of time steps compared to a PIC code w/ ponderomotive approx (laser driver) \(\rightarrow \sim \lambda_p/\lambda_0 \)

- QS solver cannot model some aspects of kinetic physics like particle self-injection

BELLA laser propagating in uniform plasma (gas-cell)

- INF&RNO QS (< 1 hour on 1 CPU)
- INF&RNO non-QS (several hours on ~100 CPUs)

\[n_0 = 4 \times 10^{17} \text{ e/cm}^3 \]
\[n_0 = 3 \times 10^{17} \text{ e/cm}^3 \]
\[n_0 = 2 \times 10^{17} \text{ e/cm}^3 \]

\(U_{\text{laser}} = 40 \text{ J} \)
\(T_{\text{laser}} = 30 \text{ fs} \)
\(w_0 = 64 \mu\text{m} \)
The INF&RNO framework: Lorentz Boosted Frame* (LBF) modeling

- The spatial/temporal scales involved in a LPA simulation DO NOT scale in the same way changing the reference frame

<table>
<thead>
<tr>
<th>Laboratory Frame</th>
<th>Boosted Lorentz Frame (β_*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_0 \rightarrow$ laser wavelength</td>
<td>$\lambda'0 = \gamma(1 + \beta_) \lambda_0 > \lambda_0$</td>
</tr>
<tr>
<td>$\ell \rightarrow$ laser length</td>
<td>$\ell' = \gamma_(1 + \beta_) \ell > \ell$</td>
</tr>
<tr>
<td>$L_p \rightarrow$ plasma length</td>
<td>$L'p = L_p / \gamma* < L_p$</td>
</tr>
<tr>
<td>$c\Delta t < \Delta z \ll \lambda_0$, $\lambda_0 < \ell \ll L_p$</td>
<td>$\Rightarrow t'_{simul} \sim (L'p + \ell')/(c(1 + \beta*))$</td>
</tr>
<tr>
<td>$\Rightarrow t'_{simul} \sim (L'p + \ell')/(c(1 + \beta*))$</td>
<td>$\lambda_0 \gamma_^2 (1 + \beta_)^2$</td>
</tr>
<tr>
<td>$#$ steps = $\frac{t'_{simul}}{\Delta t} \propto \frac{L_p}{\lambda_0} \gg 1$</td>
<td>$#$ steps' = $\frac{t'{simul}}{\Delta t'} \propto \frac{L_p}{\lambda_0 \gamma^2 (1 + \beta_)^2}$</td>
</tr>
<tr>
<td>large $#$ of steps</td>
<td>$#$ of steps reduced $(1/\gamma_*^2)$</td>
</tr>
</tbody>
</table>

\Rightarrow the LF is not the optimal frame to run a LPA simulation

\Rightarrow sim. in LBF is shorter (optimal frame is the one of the wake $\gamma_* \sim k_0 / k_p$)

\Rightarrow comp. savings if backwards propagating waves are negligible!

\Rightarrow diagnostic more complicated (LBF \leftrightarrow LF loss of simultaneity)

* Vay, PRL (2007); Vay, et al., JCP (2011)
The INF&RNO framework: Lorentz Boosted Frame* (LBF) modeling/2

- LBF modeling implemented in INF&RNO/fluid (INF&RNO/PIC underway):
 - input/output in the Lab frame (swiping plane*, transparent for the user)
 - some of the approx. in the envelope model are not Lorentz invariant (limit max γ_{LBF})

$\gamma_{LBF} = 8$
LF= 16h 47' VS LBF=15'

$\omega_p(t=200, 600, 1000)$

* Vay, JCP (2011)
Benedetti, et al., Proc. of PAC2011
INF&RNO validated by comparing simulation results with analytical solutions and by performing benchmarks with other PIC codes.*

- Testing the propagation velocity of a low intensity laser pulse\(^*\) \((a_0=0.01)\) in vacuum or plasma:

 plasma profile → \(n(r) = n_0 + \left(\frac{\pi r r_m}{r_m}\right)^{-1} \left(\frac{r}{r_m}\right)^2\)

 laser pulse → \(\hat{a}_\parallel \approx L_m^0 \left(\frac{2r^2}{w_0^2}\right) e^{-r^2/w_0^2}\)

 laser pulse velocity → \(\beta_g = 1 - \frac{k_p^2}{2k_0^2} \left(1 + 2m\right) \left(1 + \frac{r_i^4}{r_m^4}\right)\)

 (theory in black)

- Testing wakefield amplitude in the nonlinear regime: benchmark w/ VORPAL and OSIRIS*

\[E_z/E_0\]

\[a_0=2, k_p w_0=5.7, k_0/k_p=12\]
\[k_p \Delta \xi=1/30, k_p \Delta r=1/10, 20 \text{ ppc}\]

\[E_z/E_0\]

\[a_0=4, k_p w_0=5.7, k_0/k_p=12\]
\[k_p \Delta \xi=1/30, k_p \Delta r=1/10, 20 \text{ ppc}\]

*S. Schroeder, et al., POP (2011)

* Paul et al., Proc. of AAC08 (2008)
INF&RNO validated by comparing simulation results with analytical solutions and by performing benchmarks with other PIC codes/2

- Comparison with 3D PIC code ALaDyn* (INF&RNO sim. is ~150x faster)

<table>
<thead>
<tr>
<th>n_0 [e/cm3]</th>
<th>k_0/k_p</th>
<th>a_0</th>
<th>τ [fs]</th>
<th>w_0 [μm]</th>
<th>L_{sym} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \cdot 10^{18}$</td>
<td>24</td>
<td>5</td>
<td>30</td>
<td>16</td>
<td>3.2</td>
</tr>
</tbody>
</table>

box: 23×20 - res: $1/30 \times 1/20$ - $\Delta t = 0.25\Delta z$ - QSF

* Benedetti et al., IEEE TPS (2008); Benedetti et al., NIM A (2009)
Performance of INF&RNO (PIC/fluid)

- code written in C/C++ & parallelized with MPI (1D longitudinal domain decomp.) → typically we run on a few 100s to a few 1000s CPUs
- code performance on a MacBookPro laptop (2.5GHz, 4GBRAM, 1333MHz DDR3)

<table>
<thead>
<tr>
<th>FLUID (RK2)</th>
<th>PIC (RK4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 μs / (grid point * time step)</td>
<td>1 μs / (particle push * time step)</td>
</tr>
</tbody>
</table>

- Examples of simulation cost
 - 100 MeV stage (~10^{19} cm$^{-3}$, ~mm) / PIC → $\sim 10^2$ CPUh
 - 1 GeV stage (~10^{18} cm$^{-3}$, ~cm) / PIC → $\sim 10^3$–10^4 CPUh
 - 10 GeV stage quasi-lin. (~10^{17} cm$^{-3}$, ~m) / FLUID → $\sim 10^3$ CPUh
 - 10 GeV stage quasi-lin. (~10^{17} cm$^{-3}$, ~m) / FLUID + LBF [$\gamma_{LBF}=10$] → ~ 20 CPUh
 - 10 GeV stage bubble (~10^{17} cm$^{-3}$, ~10 cm) / PIC → $\sim 10^4$–10^5 CPUh

=> gain between 2 and 5 orders of magnitude in the simulation time
INF&RNO is used to model current BELLA experiments at LBNL

- Modeling of multi-GeV e-beam production from 9 cm-long capillary-discharge-guided sub-PW laser pulses (BELLA) in the self-trapping regime*

Understanding laser evolution (effect of laser mode and background plasma density on laser propagation): limit cap damage & provide “best” wake for acceleration

Interpreting post-interaction laser spectra as an in situ density diagnostic: knowledge of density is crucial but difficult

Model e-beam production & acceleration

→ features of INF&RNO allowed to run several simulations for detailed parameters scan at a reasonable computational cost

* Leemans et al., PRL (2014)
BELLA laser pulse evolution has been characterized studying the effect of transverse laser mode and plasma density profile.

- An accurate model of the BELLA laser pulse ($U_{\text{laser}} = 15$ J) has been constructed based on measured longitudinal laser intensity profile and transverse intensity profile based on experiment data.

\[
\frac{I}{I_0} = \left[\frac{2J_1(r/R)}{(r/R)} \right]^2
\]

- Propagation in plasma of Gaussian and top-hat is different.

Propagation distance (cm)

- FWHM = 63.5 μm
- top-hat near field: $\frac{I}{I_0} = \left[\frac{2J_1(r/R)}{(r/R)} \right]^2$
- Gaussian

Graphs and figures illustrating the intensity profiles and propagation distances for Gaussian and top-hat modes under different plasma densities.
Post-interaction laser optical spectra have been used as an independent diagnostic of the on-axis density.

- Comparison between measured and simulated post-interaction (after 9 cm plasma) laser optical spectra ($U_{\text{laser}} = 7.5 \text{ J}$)

→ good agreement between experiment and simulation: independent (in situ) diagnostic for the plasma density
INF&RNO full PIC simulation allows for detailed investigation of particle self-injection and acceleration.

Simulation cost: (1-3)x10^5 CPUh (gain ~ 1000)
Conclusions

The **INF&RNO** computational framework has been presented

- features: improved laser-envelope solver, ponderomotive, 2D cylindrical, PIC/Fluid integrated, LBF, quasi-static, parallel

- the code is **several orders of magnitude faster compared to “full” PIC**, while still retaining physical fidelity → possible to perform large parameters scan at a reasonable computational cost

- the code has been **widely benchmarked and validated**

- **INF&RNO** used to model current (and future) BELLA experiments at LBNL